364 lines
11 KiB
Python
364 lines
11 KiB
Python
# curves_2x1_by_net_with_regimes_from_df.py
|
||
from __future__ import annotations
|
||
|
||
import shutil
|
||
from datetime import datetime
|
||
from pathlib import Path
|
||
|
||
import matplotlib.pyplot as plt
|
||
import numpy as np
|
||
import polars as pl
|
||
from matplotlib.lines import Line2D
|
||
from scipy.stats import sem, t
|
||
|
||
# CHANGE THIS IMPORT IF YOUR LOADER MODULE NAME IS DIFFERENT
|
||
from load_results import load_results_dataframe
|
||
|
||
# ---------------------------------
|
||
# Config
|
||
# ---------------------------------
|
||
ROOT = Path("/home/fedex/mt/results/done")
|
||
OUTPUT_DIR = Path("/home/fedex/mt/plots/results_semi_labels_comparison")
|
||
|
||
LATENT_DIMS = [32, 64, 128, 256, 512, 768, 1024]
|
||
SEMI_REGIMES = [(0, 0), (50, 10), (500, 100)]
|
||
EVALS = ["exp_based", "manual_based"]
|
||
|
||
# Interp grids
|
||
ROC_GRID = np.linspace(0.0, 1.0, 200)
|
||
PRC_GRID = np.linspace(0.0, 1.0, 200)
|
||
|
||
# Baselines are duplicated across nets; use Efficient-only to avoid repetition
|
||
BASELINE_NET = "Efficient"
|
||
|
||
# Colors/styles
|
||
COLOR_BASELINES = {
|
||
"isoforest": "tab:purple",
|
||
"ocsvm": "tab:green",
|
||
}
|
||
COLOR_REGIMES = {
|
||
(0, 0): "tab:blue",
|
||
(50, 10): "tab:orange",
|
||
(500, 100): "tab:red",
|
||
}
|
||
LINESTYLES = {
|
||
(0, 0): "-",
|
||
(50, 10): "--",
|
||
(500, 100): "-.",
|
||
}
|
||
|
||
|
||
# ---------------------------------
|
||
# Helpers
|
||
# ---------------------------------
|
||
def _net_label_col(df: pl.DataFrame) -> pl.DataFrame:
|
||
return df.with_columns(
|
||
pl.when(
|
||
pl.col("network").cast(pl.Utf8).str.to_lowercase().str.contains("lenet")
|
||
)
|
||
.then(pl.lit("LeNet"))
|
||
.when(
|
||
pl.col("network").cast(pl.Utf8).str.to_lowercase().str.contains("efficient")
|
||
)
|
||
.then(pl.lit("Efficient"))
|
||
.otherwise(pl.col("network").cast(pl.Utf8))
|
||
.alias("net_label")
|
||
)
|
||
|
||
|
||
def mean_ci(values: list[float], confidence: float = 0.95) -> tuple[float, float]:
|
||
"""Return mean and half-width of the (approx) confidence interval. Robust to n<2."""
|
||
arr = np.asarray([v for v in values if v is not None], dtype=float)
|
||
if arr.size == 0:
|
||
return np.nan, np.nan
|
||
if arr.size == 1:
|
||
return float(arr[0]), 0.0
|
||
m = float(arr.mean())
|
||
s = sem(arr, nan_policy="omit")
|
||
h = s * t.ppf((1 + confidence) / 2.0, arr.size - 1)
|
||
return m, float(h)
|
||
|
||
|
||
def _interp_mean_std(curves: list[tuple[np.ndarray, np.ndarray]], grid: np.ndarray):
|
||
"""Interpolate many (x,y) onto grid and return mean±std; robust to duplicates/empty."""
|
||
if not curves:
|
||
return np.full_like(grid, np.nan, float), np.full_like(grid, np.nan, float)
|
||
interps = []
|
||
for x, y in curves:
|
||
if x is None or y is None:
|
||
continue
|
||
x = np.asarray(x, float)
|
||
y = np.asarray(y, float)
|
||
if x.size == 0 or y.size == 0 or x.size != y.size:
|
||
continue
|
||
order = np.argsort(x)
|
||
x, y = x[order], y[order]
|
||
x, uniq_idx = np.unique(x, return_index=True)
|
||
y = y[uniq_idx]
|
||
g = np.clip(grid, x[0], x[-1])
|
||
yi = np.interp(g, x, y)
|
||
interps.append(yi)
|
||
if not interps:
|
||
return np.full_like(grid, np.nan, float), np.full_like(grid, np.nan, float)
|
||
A = np.vstack(interps)
|
||
return np.nanmean(A, axis=0), np.nanstd(A, axis=0)
|
||
|
||
|
||
def _extract_curves(rows: list[dict], kind: str) -> list[tuple[np.ndarray, np.ndarray]]:
|
||
curves = []
|
||
for r in rows:
|
||
if kind == "roc":
|
||
c = r.get("roc_curve")
|
||
if not c:
|
||
continue
|
||
x, y = c.get("fpr"), c.get("tpr")
|
||
else:
|
||
c = r.get("prc_curve")
|
||
if not c:
|
||
continue
|
||
x, y = c.get("recall"), c.get("precision")
|
||
if x is None or y is None:
|
||
continue
|
||
curves.append((np.asarray(x, float), np.asarray(y, float)))
|
||
return curves
|
||
|
||
|
||
def _select_rows(
|
||
df: pl.DataFrame,
|
||
*,
|
||
model: str,
|
||
eval_type: str,
|
||
latent_dim: int,
|
||
semi_normals: int | None = None,
|
||
semi_anomalous: int | None = None,
|
||
net_label: str | None = None,
|
||
) -> pl.DataFrame:
|
||
exprs = [
|
||
pl.col("model") == model,
|
||
pl.col("eval") == eval_type,
|
||
pl.col("latent_dim") == latent_dim,
|
||
]
|
||
if semi_normals is not None:
|
||
exprs.append(pl.col("semi_normals") == semi_normals)
|
||
if semi_anomalous is not None:
|
||
exprs.append(pl.col("semi_anomalous") == semi_anomalous)
|
||
if net_label is not None:
|
||
exprs.append(pl.col("net_label") == net_label)
|
||
return df.filter(pl.all_horizontal(exprs))
|
||
|
||
|
||
def _auc_list(sub: pl.DataFrame) -> list[float]:
|
||
return [x for x in sub.select("auc").to_series().to_list() if x is not None]
|
||
|
||
|
||
def _ap_list(sub: pl.DataFrame) -> list[float]:
|
||
return [x for x in sub.select("ap").to_series().to_list() if x is not None]
|
||
|
||
|
||
def _plot_panel(
|
||
ax,
|
||
df: pl.DataFrame,
|
||
*,
|
||
eval_type: str,
|
||
net_for_deepsad: str,
|
||
latent_dim: int,
|
||
kind: str,
|
||
):
|
||
"""
|
||
Plot one panel: DeepSAD (net_for_deepsad) with 3 regimes + baselines (from Efficient).
|
||
Legend entries include mean±CI of AUC/AP.
|
||
"""
|
||
ax.grid(True, alpha=0.3)
|
||
ax.set_xlim(0, 1)
|
||
ax.set_ylim(0, 1)
|
||
if kind == "roc":
|
||
ax.set_xlabel("FPR")
|
||
ax.set_ylabel("TPR")
|
||
grid = ROC_GRID
|
||
else:
|
||
ax.set_xlabel("Recall")
|
||
ax.set_ylabel("Precision")
|
||
grid = PRC_GRID
|
||
|
||
handles, labels = [], []
|
||
|
||
# ----- Baselines (Efficient)
|
||
for model in ("isoforest", "ocsvm"):
|
||
sub_b = _select_rows(
|
||
df,
|
||
model=model,
|
||
eval_type=eval_type,
|
||
latent_dim=latent_dim,
|
||
net_label=BASELINE_NET,
|
||
)
|
||
if sub_b.height == 0:
|
||
continue
|
||
rows = sub_b.select("roc_curve" if kind == "roc" else "prc_curve").to_dicts()
|
||
curves = _extract_curves(rows, kind)
|
||
mean_y, std_y = _interp_mean_std(curves, grid)
|
||
if np.all(np.isnan(mean_y)):
|
||
continue
|
||
|
||
# Metric for legend
|
||
metric_vals = _auc_list(sub_b) if kind == "roc" else _ap_list(sub_b)
|
||
m, ci = mean_ci(metric_vals)
|
||
lab = f"{model} ({'AUC' if kind == 'roc' else 'AP'}={m:.3f}±{ci:.3f})"
|
||
|
||
color = COLOR_BASELINES[model]
|
||
h = ax.plot(grid, mean_y, lw=2, color=color, label=lab)[0]
|
||
ax.fill_between(grid, mean_y - std_y, mean_y + std_y, alpha=0.15, color=color)
|
||
handles.append(h)
|
||
labels.append(lab)
|
||
|
||
# ----- DeepSAD (this panel's net) across semi-regimes
|
||
for regime in SEMI_REGIMES:
|
||
sn, sa = regime
|
||
sub_d = _select_rows(
|
||
df,
|
||
model="deepsad",
|
||
eval_type=eval_type,
|
||
latent_dim=latent_dim,
|
||
semi_normals=sn,
|
||
semi_anomalous=sa,
|
||
net_label=net_for_deepsad,
|
||
)
|
||
if sub_d.height == 0:
|
||
continue
|
||
rows = sub_d.select("roc_curve" if kind == "roc" else "prc_curve").to_dicts()
|
||
curves = _extract_curves(rows, kind)
|
||
mean_y, std_y = _interp_mean_std(curves, grid)
|
||
if np.all(np.isnan(mean_y)):
|
||
continue
|
||
|
||
metric_vals = _auc_list(sub_d) if kind == "roc" else _ap_list(sub_d)
|
||
m, ci = mean_ci(metric_vals)
|
||
lab = f"DeepSAD {net_for_deepsad} — semi {sn}/{sa} ({'AUC' if kind == 'roc' else 'AP'}={m:.3f}±{ci:.3f})"
|
||
|
||
color = COLOR_REGIMES[regime]
|
||
ls = LINESTYLES[regime]
|
||
h = ax.plot(grid, mean_y, lw=2, color=color, linestyle=ls, label=lab)[0]
|
||
ax.fill_between(grid, mean_y - std_y, mean_y + std_y, alpha=0.15, color=color)
|
||
handles.append(h)
|
||
labels.append(lab)
|
||
|
||
# Chance line for ROC
|
||
if kind == "roc":
|
||
ax.plot([0, 1], [0, 1], "k--", alpha=0.6, label="Chance")
|
||
|
||
# Legend
|
||
ax.legend(loc="lower right", fontsize=9, frameon=True)
|
||
|
||
|
||
def make_figures_for_dim(
|
||
df: pl.DataFrame, eval_type: str, latent_dim: int, out_dir: Path
|
||
):
|
||
# ROC: 2×1
|
||
fig_roc, axes = plt.subplots(
|
||
nrows=1, ncols=2, figsize=(14, 5), constrained_layout=True
|
||
)
|
||
fig_roc.suptitle(f"ROC — {eval_type} — latent_dim={latent_dim}", fontsize=14)
|
||
|
||
_plot_panel(
|
||
axes[0],
|
||
df,
|
||
eval_type=eval_type,
|
||
net_for_deepsad="LeNet",
|
||
latent_dim=latent_dim,
|
||
kind="roc",
|
||
)
|
||
axes[0].set_title("DeepSAD (LeNet) + baselines")
|
||
|
||
_plot_panel(
|
||
axes[1],
|
||
df,
|
||
eval_type=eval_type,
|
||
net_for_deepsad="Efficient",
|
||
latent_dim=latent_dim,
|
||
kind="roc",
|
||
)
|
||
axes[1].set_title("DeepSAD (Efficient) + baselines")
|
||
|
||
out_roc = out_dir / f"roc_{latent_dim}_{eval_type}.png"
|
||
fig_roc.savefig(out_roc, dpi=150, bbox_inches="tight")
|
||
plt.close(fig_roc)
|
||
|
||
# PRC: 2×1
|
||
fig_prc, axes = plt.subplots(
|
||
nrows=1, ncols=2, figsize=(14, 5), constrained_layout=True
|
||
)
|
||
fig_prc.suptitle(f"PRC — {eval_type} — latent_dim={latent_dim}", fontsize=14)
|
||
|
||
_plot_panel(
|
||
axes[0],
|
||
df,
|
||
eval_type=eval_type,
|
||
net_for_deepsad="LeNet",
|
||
latent_dim=latent_dim,
|
||
kind="prc",
|
||
)
|
||
axes[0].set_title("DeepSAD (LeNet) + baselines")
|
||
|
||
_plot_panel(
|
||
axes[1],
|
||
df,
|
||
eval_type=eval_type,
|
||
net_for_deepsad="Efficient",
|
||
latent_dim=latent_dim,
|
||
kind="prc",
|
||
)
|
||
axes[1].set_title("DeepSAD (Efficient) + baselines")
|
||
|
||
out_prc = out_dir / f"prc_{latent_dim}_{eval_type}.png"
|
||
fig_prc.savefig(out_prc, dpi=150, bbox_inches="tight")
|
||
plt.close(fig_prc)
|
||
|
||
|
||
def main():
|
||
# Load dataframe and prep
|
||
df = load_results_dataframe(ROOT, allow_cache=True)
|
||
df = _net_label_col(df)
|
||
|
||
# Filter to relevant models/evals only once
|
||
df = df.filter(
|
||
(pl.col("model").is_in(["deepsad", "isoforest", "ocsvm"]))
|
||
& (pl.col("eval").is_in(EVALS))
|
||
)
|
||
|
||
# Output/archiving like your AE script
|
||
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
||
archive = OUTPUT_DIR / "archive"
|
||
archive.mkdir(parents=True, exist_ok=True)
|
||
ts_dir = archive / datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
||
ts_dir.mkdir(parents=True, exist_ok=True)
|
||
|
||
# Generate figures
|
||
for eval_type in EVALS:
|
||
for dim in LATENT_DIMS:
|
||
make_figures_for_dim(
|
||
df, eval_type=eval_type, latent_dim=dim, out_dir=ts_dir
|
||
)
|
||
|
||
# Copy this script for provenance
|
||
script_path = Path(__file__)
|
||
try:
|
||
shutil.copy2(script_path, ts_dir)
|
||
except Exception:
|
||
pass # best effort if running in environments where __file__ may not exist
|
||
|
||
# Update "latest"
|
||
latest = OUTPUT_DIR / "latest"
|
||
latest.mkdir(parents=True, exist_ok=True)
|
||
for f in latest.iterdir():
|
||
if f.is_file():
|
||
f.unlink()
|
||
for f in ts_dir.iterdir():
|
||
if f.is_file():
|
||
shutil.copy2(f, latest / f.name)
|
||
|
||
print(f"Saved plots to: {ts_dir}")
|
||
print(f"Also updated: {latest}")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|