def calculate_conv_dimensions(W_in, H_in, K, S, P): """ Calculate the output dimensions of a convolutional layer. Parameters: W_in (int): Width of the input image H_in (int): Height of the input image K (int): Size of the filter (assumed to be square) S (int): Stride P (int): Padding Returns: (int, int): Width and height of the output activation map """ W_out = (W_in - K + (2 * P)) / S + 1 H_out = (H_in - K + (2 * P)) / S + 1 return W_out, H_out print(f"w, h = {calculate_conv_dimensions(W_in=2048, H_in=32, K=11, S=4, P=2)=}") # w, h = calculate_conv_dimensions(W_in=2048, H_in=32, K=11, S=4, P=2) # print(f"{calculate_conv_dimensions(W_in=w, H_in=h, K=11, S=4, P=2)=}")