unignored pdfs, added network arch diagrams
This commit is contained in:
117
thesis/third_party/PlotNeuralNet/deepsad/arch_lenet_encoder.py
vendored
Normal file
117
thesis/third_party/PlotNeuralNet/deepsad/arch_lenet_encoder.py
vendored
Normal file
@@ -0,0 +1,117 @@
|
||||
# subter_lenet_arch.py
|
||||
# Requires running from inside the PlotNeuralNet repo, like: python3 ../subter_lenet_arch.py
|
||||
import sys, argparse
|
||||
|
||||
sys.path.append("../") # import pycore from repo root
|
||||
|
||||
from pycore.tikzeng import *
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--rep_dim", type=int, default=1024, help="latent size for FC")
|
||||
args = parser.parse_args()
|
||||
REP = int(args.rep_dim)
|
||||
|
||||
# Visual scales so the huge width doesn't dominate the figure
|
||||
H32, H16, H8 = 26, 18, 12
|
||||
D2048, D1024, D512 = 52, 36, 24
|
||||
W1, W4, W8 = 1, 2, 4
|
||||
|
||||
|
||||
arch = [
|
||||
to_head(".."),
|
||||
to_cor(),
|
||||
to_begin(),
|
||||
# --------------------------- ENCODER ---------------------------
|
||||
# Input 1×32×2048 (caption carries H×W; s_filer is numeric)
|
||||
to_Conv(
|
||||
"input",
|
||||
s_filer="{{2048×32}}",
|
||||
n_filer=1,
|
||||
offset="(0,0,0)",
|
||||
to="(0,0,0)",
|
||||
height=H32,
|
||||
depth=D2048,
|
||||
width=W1,
|
||||
caption="input",
|
||||
),
|
||||
# Conv1 (5x5, same): 1->8, 32×2048
|
||||
to_Conv(
|
||||
"conv1",
|
||||
s_filer="{{1024×16}}",
|
||||
n_filer=8,
|
||||
offset="(2,0,0)",
|
||||
to="(input-east)",
|
||||
height=H32,
|
||||
depth=D2048,
|
||||
width=W8,
|
||||
caption="conv1",
|
||||
),
|
||||
# Pool1 2×2: 32×2048 -> 16×1024
|
||||
# to_connection("input", "conv1"),
|
||||
to_Pool(
|
||||
"pool1",
|
||||
offset="(0,0,0)",
|
||||
to="(conv1-east)",
|
||||
height=H16,
|
||||
depth=D1024,
|
||||
width=W8,
|
||||
caption="",
|
||||
),
|
||||
# Conv2 (5x5, same): 8->4, stays 16×1024
|
||||
to_Conv(
|
||||
"conv2",
|
||||
s_filer="{{512×8}}",
|
||||
n_filer=4,
|
||||
offset="(2,0,0)",
|
||||
to="(pool1-east)",
|
||||
height=H16,
|
||||
depth=D1024,
|
||||
width=W4,
|
||||
caption="conv2",
|
||||
),
|
||||
# Pool2 2×2: 16×1024 -> 8×512
|
||||
# to_connection("pool1", "conv2"),
|
||||
to_Pool(
|
||||
"pool2",
|
||||
offset="(0,0,0)",
|
||||
to="(conv2-east)",
|
||||
height=H8,
|
||||
depth=D512,
|
||||
width=W4,
|
||||
caption="",
|
||||
),
|
||||
# FC -> rep_dim (use numeric n_filer)
|
||||
to_fc(
|
||||
"fc1",
|
||||
n_filer="{{4×512×8}}",
|
||||
offset="(2,0,0)",
|
||||
to="(pool2-east)",
|
||||
height=1.3,
|
||||
depth=D512,
|
||||
width=W1,
|
||||
caption=f"FC",
|
||||
),
|
||||
# to_connection("pool2", "fc1"),
|
||||
# --------------------------- LATENT ---------------------------
|
||||
to_Conv(
|
||||
"latent",
|
||||
n_filer="",
|
||||
s_filer="latent dim",
|
||||
offset="(2,0,0)",
|
||||
to="(fc1-east)",
|
||||
height=H8 * 1.6,
|
||||
depth=1.3,
|
||||
width=W1,
|
||||
caption=f"Latent Space",
|
||||
),
|
||||
to_end(),
|
||||
]
|
||||
|
||||
|
||||
def main():
|
||||
name = "subter_lenet_arch"
|
||||
to_generate(arch, name + ".tex")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user