table plot

This commit is contained in:
Jan Kowalczyk
2025-09-17 11:07:07 +02:00
parent cc5a8d25d3
commit 95867bde7a

View File

@@ -0,0 +1,255 @@
from __future__ import annotations
import shutil
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
import polars as pl
# CHANGE THIS IMPORT IF YOUR LOADER MODULE IS NAMED DIFFERENTLY
from load_results import load_results_dataframe
# ----------------------------
# Config
# ----------------------------
ROOT = Path("/home/fedex/mt/results/copy") # experiments root you pass to the loader
OUTPUT_DIR = Path("/home/fedex/mt/plots/results_latent_space_tables")
# Semi-labeling regimes (semi_normals, semi_anomalous)
SEMI_LABELING_REGIMES: list[tuple[int, int]] = [(0, 0), (50, 10), (500, 100)]
# Which evaluation columns to include (one table per eval × semi-regime)
EVALS: list[str] = ["exp_based", "manual_based"]
# Row order (latent dims)
LATENT_DIMS: list[int] = [32, 64, 128, 256, 512, 768, 1024]
# Column order (method shown to the user)
# We split DeepSAD into the two network backbones, like your plots.
METHOD_COLUMNS = [
("deepsad", "LeNet"), # DeepSAD (LeNet)
("deepsad", "Efficient"), # DeepSAD (Efficient)
("isoforest", "Efficient"), # IsolationForest (Efficient backbone baseline)
("ocsvm", "Efficient"), # OC-SVM (Efficient backbone baseline)
]
# Formatting
DECIMALS = 3 # number of decimals for mean/std
STD_FMT = r"\textpm" # between mean and std in LaTeX
# ----------------------------
# Helpers
# ----------------------------
def _with_net_label(df: pl.DataFrame) -> pl.DataFrame:
"""Add a canonical 'net_label' column like the plotting script (LeNet/Efficient/fallback)."""
return df.with_columns(
pl.when(
pl.col("network").cast(pl.Utf8).str.to_lowercase().str.contains("lenet")
)
.then(pl.lit("LeNet"))
.when(
pl.col("network").cast(pl.Utf8).str.to_lowercase().str.contains("efficient")
)
.then(pl.lit("Efficient"))
.otherwise(pl.col("network").cast(pl.Utf8))
.alias("net_label")
)
def _filter_base(
df: pl.DataFrame,
*,
eval_type: str,
semi_normals: int,
semi_anomalous: int,
) -> pl.DataFrame:
"""Common filtering by regime/eval/valid dims&models."""
return df.filter(
(pl.col("semi_normals") == semi_normals)
& (pl.col("semi_anomalous") == semi_anomalous)
& (pl.col("eval") == eval_type)
& (pl.col("latent_dim").is_in(LATENT_DIMS))
& (pl.col("model").is_in(["deepsad", "isoforest", "ocsvm"]))
).select(
"model",
"net_label",
"latent_dim",
"fold",
"auc",
)
def _format_mean_std(mean: float | None, std: float | None) -> str:
if mean is None or (mean != mean): # NaN check
return "--"
if std is None or (std != std):
return f"{mean:.{DECIMALS}f}"
return f"{mean:.{DECIMALS}f} {STD_FMT} {std:.{DECIMALS}f}"
@dataclass(frozen=True)
class Cell:
mean: float | None
std: float | None
def _compute_cells(df: pl.DataFrame) -> dict[tuple[int, str, str], Cell]:
"""
Compute per-(latent_dim, model, net_label) mean/std for AUC across folds.
Returns a dict keyed by (latent_dim, model, net_label).
"""
if df.is_empty():
return {}
agg = (
df.group_by(["latent_dim", "model", "net_label"])
.agg(
pl.col("auc").mean().alias("mean_auc"), pl.col("auc").std().alias("std_auc")
)
.to_dicts()
)
out: dict[tuple[int, str, str], Cell] = {}
for row in agg:
key = (int(row["latent_dim"]), str(row["model"]), str(row["net_label"]))
out[key] = Cell(mean=row.get("mean_auc"), std=row.get("std_auc"))
return out
def _bold_best_in_row(values: list[float | None]) -> list[bool]:
"""Return a mask of which entries are the (tied) maximum among non-None values."""
clean = [(v if (v is not None and v == v) else None) for v in values]
finite_vals = [v for v in clean if v is not None]
if not finite_vals:
return [False] * len(values)
maxv = max(finite_vals)
return [(v is not None and abs(v - maxv) < 1e-12) for v in clean]
def _latex_table(
cells: dict[tuple[int, str, str], Cell],
*,
eval_type: str,
semi_normals: int,
semi_anomalous: int,
) -> str:
"""
Build a LaTeX table with rows=latent dims and columns=METHOD_COLUMNS.
Bold best AUC (mean) per row.
"""
header_cols = [
r"\textbf{DeepSAD (LeNet)}",
r"\textbf{DeepSAD (Efficient)}",
r"\textbf{IsolationForest}",
r"\textbf{OC\text{-}SVM}",
]
eval_type_str = (
"experiment-based evaluation"
if eval_type == "exp_based"
else "handlabeling-based evaluation"
)
lines: list[str] = []
lines.append(r"\begin{table}[t]")
lines.append(r"\centering")
lines.append(
rf"\caption{{AUC (mean {STD_FMT} std) across 5 folds for \texttt{{{eval_type_str}}}, "
rf"semi-labeling regime: {semi_normals} normal samples {semi_anomalous} anomalous samples.}}"
)
lines.append(rf"\label{{tab:auc_{eval_type}_semi_{semi_normals}_{semi_anomalous}}}")
lines.append(r"\begin{tabularx}{\textwidth}{cYYYY}")
lines.append(r"\toprule")
lines.append(r"\textbf{Latent Dim.} & " + " & ".join(header_cols) + r" \\")
lines.append(r"\midrule")
for dim in LATENT_DIMS:
# Collect means for bolding
means_for_bold: list[float | None] = []
cell_strs: list[str] = []
for model, net in METHOD_COLUMNS:
cell = cells.get((dim, model, net), Cell(None, None))
means_for_bold.append(cell.mean)
cell_strs.append(_format_mean_std(cell.mean, cell.std))
bold_mask = _bold_best_in_row(means_for_bold)
pretty_cells: list[str] = []
for s, do_bold in zip(cell_strs, bold_mask):
if do_bold and s != "--":
pretty_cells.append(r"\textbf{" + s + r"}")
else:
pretty_cells.append(s)
lines.append(f"{dim} & " + " & ".join(pretty_cells) + r" \\")
lines.append(r"\bottomrule")
lines.append(r"\end{tabularx}")
lines.append(r"\end{table}")
return "\n".join(lines)
def main():
# Load full results DF (cache behavior handled by your loader)
df = load_results_dataframe(ROOT, allow_cache=True)
df = _with_net_label(df)
# Prepare output dirs
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
archive_dir = OUTPUT_DIR / "archive"
archive_dir.mkdir(parents=True, exist_ok=True)
ts_dir = archive_dir / datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
ts_dir.mkdir(parents=True, exist_ok=True)
emitted_files: list[Path] = []
for semi_normals, semi_anomalous in SEMI_LABELING_REGIMES:
for eval_type in EVALS:
sub = _filter_base(
df,
eval_type=eval_type,
semi_normals=semi_normals,
semi_anomalous=semi_anomalous,
)
# For baselines (isoforest/ocsvm) we constrain to Efficient backbone to mirror plots
sub = sub.filter(
pl.when(pl.col("model").is_in(["isoforest", "ocsvm"]))
.then(pl.col("net_label") == "Efficient")
.otherwise(True)
)
cells = _compute_cells(sub)
tex = _latex_table(
cells,
eval_type=eval_type,
semi_normals=semi_normals,
semi_anomalous=semi_anomalous,
)
out_name = f"auc_table_{eval_type}_semi_{semi_normals}_{semi_anomalous}.tex"
out_path = ts_dir / out_name
out_path.write_text(tex, encoding="utf-8")
emitted_files.append(out_path)
# Copy this script to preserve the code used for the outputs
script_path = Path(__file__)
shutil.copy2(script_path, ts_dir / script_path.name)
# Mirror latest
latest = OUTPUT_DIR / "latest"
latest.mkdir(exist_ok=True, parents=True)
for f in latest.iterdir():
if f.is_file():
f.unlink()
for f in ts_dir.iterdir():
if f.is_file():
shutil.copy2(f, latest / f.name)
print(f"Saved tables to: {ts_dir}")
print(f"Also updated: {latest}")
for p in emitted_files:
print(f" - {p.name}")
if __name__ == "__main__":
main()