formatting

This commit is contained in:
Jan Kowalczyk
2025-10-19 17:39:42 +02:00
parent 6cd2c7fbef
commit 8f983b890f
2 changed files with 1 additions and 1 deletions

Binary file not shown.

View File

@@ -253,7 +253,7 @@ Anomaly detection refers to the process of detecting unexpected patterns of data
Figure~\ref{fig:anomaly_detection_overview} depicts a simple but illustrative example of data that can be classified as either normal or anomalous and shows the problem that anomaly detection methods try to generally solve. A successful anomaly detection method would somehow learn to differentiate normal from anomalous data, for example, by learning the boundaries around the available normal data and classifying it as either normal or anomalous based on its location inside or outside of those boundaries. Another possible approach could calculate an analog value that correlates with the likelihood of a sample being anomalous, for example, by using the sample's distance from the closest normal data cluster's center. Figure~\ref{fig:anomaly_detection_overview} depicts a simple but illustrative example of data that can be classified as either normal or anomalous and shows the problem that anomaly detection methods try to generally solve. A successful anomaly detection method would somehow learn to differentiate normal from anomalous data, for example, by learning the boundaries around the available normal data and classifying it as either normal or anomalous based on its location inside or outside of those boundaries. Another possible approach could calculate an analog value that correlates with the likelihood of a sample being anomalous, for example, by using the sample's distance from the closest normal data cluster's center.
\figc{anomaly_detection_overview}{figures/anomaly_detection_overview}{An illustrative example of anomalous and normal data containing 2-dimensional data with clusters of normal data $N_1$ and $N_2$, as well as two single anomalies $o_1$ and $o_2$ and a cluster of anomalies $O_3$. Reproduced from~\cite{anomaly_detection_survey}\rev{.}}{width=0.5\textwidth} \figc{anomaly_detection_overview}{figures/anomaly_detection_overview}{An illustrative example of anomalous and normal data containing 2-dimensional data with clusters of normal data $N_1$ and $N_2$, as well as two single anomalies $o_1$ and $o_2$ and a cluster of anomalies $O_3$. Reproduced from~\cite{anomaly_detection_survey}\rev{.}}{width=0.55\textwidth}
By their very nature, anomalies are rare occurrences and oftentimes unpredictable in nature, which makes it hard to define all possible anomalies in any system. It also makes it very challenging to create an algorithm that is capable of detecting anomalies that may have never occurred before and may not have been known to exist during the creation of the detection algorithm. There are many possible approaches to this problem, though they can be roughly grouped into six distinct categories based on the techniques used~\cite{anomaly_detection_survey}: By their very nature, anomalies are rare occurrences and oftentimes unpredictable in nature, which makes it hard to define all possible anomalies in any system. It also makes it very challenging to create an algorithm that is capable of detecting anomalies that may have never occurred before and may not have been known to exist during the creation of the detection algorithm. There are many possible approaches to this problem, though they can be roughly grouped into six distinct categories based on the techniques used~\cite{anomaly_detection_survey}: